What is a Flame Sensor?

If a roll out switch is a master “things have gone horribly wrong, stop the show” switch and thermisters are basically limited to measuring temperature, how do we know the burner is actually making a flame? Sure, the thermister will read heat, but that takes time. Imagine the igniter has failed, it takes maybe 10-40 seconds to register enough heat to confirm a flame. The combustion chamber is now pumped full of a potentially explosive fuel mixture and nothing is happening. We need something much, much faster, we need a flame sensor.   How Not to Detect a Flame The way a person knows something is on fire is usually the bright flames and the fact that sticking their hand near it becomes really painful. This approach doesn’t quite work for a furnace. We could measure the light output, that requires more processing power to interpret the data, some incredibly sensitive hardware to detect the tiniest start of a flame, and it doesn’t work on every fuel type. There are systems that work this way, but it’s a little more expensive. We could measure the temperature, but we run into challenges with making a sensor you can shove in the heart of a flame for years on end without failure. It has been done, but it’s expensive. There are however, laws of physics we can exploit to detect a flame without anywhere near so many challenges. We can detect a […]

Read More →

Measuring the Heat

Have you ever wondered how your heating system knows to turn on? Or to turn off? You could say “the furnace controller tells it to” and “the thermostat tells it to,” but that’s not the whole picture, is it? We need a way to measure the temperature inside the furnace and inside our homes. It has to be durable, reliable, and affordable. It doesn’t have to be precise, but it must be right every time it’s measured.   A Complex Web of Technology There are a staggering number of ways to control a furnace through temperature input. A brief and nowhere near all-inclusive list of techniques include: Gas Expansion Tubes, Bi-Metal Switches, Bi-Metal Coils, Thermocouples Driven by a Pilot-Light, Thermistors, and of course modern IR Temperature Sensors found in your enthusiast-chef’s kitchen. These devices are all in some way sensitive to the heat. Bi-Metal systems expand as temperatures change. Measuring the expansion reads the approximate temperature. Gas Expansion Tubes have an internal change in pressure as temperature changes. The pressure can be used to calculate temperature. Thermocouples generate an electrical current when they’re heated. Measuring the current allows you to determine the temperature. Inside a furnace, they’re often heated directly by the pilot light or burner to read flame temperatures. Infrared Thermometers measure “Blackbody (Wikipedia Link)” radiation, but aren’t all that effective around metals or the air. And lastly, we have the humble Thermistor, which varies it’s resistance based on […]

Read More →